Search results
Results from the WOW.Com Content Network
The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System (as well as other planetary systems). It suggests the Solar System is formed from gas and dust orbiting the Sun which clumped up together to form the planets.
While the broad picture of the nebular hypothesis is widely accepted, [33] many of the details are not well understood and continue to be refined. The refined nebular model was developed entirely on observations of the Solar System because it was the only one known until the mid-1990s.
The nebular hypothesis says that the Solar System formed from the gravitational collapse of a fragment of a giant molecular cloud, [9] most likely at the edge of a Wolf-Rayet bubble. [10] The cloud was about 20 parsecs (65 light years) across, [9] while the fragments were roughly 1 parsec (three and a quarter light-years) across. [11]
In cosmogony, the nebular hypothesis is the most widely accepted model explaining the formation and evolution of the Solar System. It was first proposed in 1734 by Emanuel Swedenborg . Originally applied only to our own Solar System , this method of planetary system formation is now thought to be at work throughout the universe .
The Solar System is believed to have formed according to the nebular hypothesis, first proposed in 1755 by Immanuel Kant and independently formulated by Pierre-Simon Laplace. [2] This theory holds that 4.6 billion years ago the Solar System formed from the gravitational collapse of a giant molecular cloud. This initial cloud was likely several ...
The Chamberlin–Moulton planetesimal hypothesis was proposed in 1905 by geologist Thomas Chrowder Chamberlin and astronomer Forest Ray Moulton to describe the formation of the Solar System. It was proposed as a replacement for the Laplacian version of the nebular hypothesis that had prevailed since the 19th century.
Nebular hypothesis; Planetary migration; Young stellar object (YSO) denotes a star in its early stage of evolution. This class consists of two groups of objects: ...
The nebular hypothesis of solar system formation describes how protoplanetary disks are thought to evolve into planetary systems. Electrostatic and gravitational interactions may cause the dust and ice grains in the disk to accrete into planetesimals .