Search results
Results from the WOW.Com Content Network
For example, acetic acid is a weak acid which has a = 1.75 x 10 −5. Its conjugate base is the acetate ion with K b = 10 −14 /K a = 5.7 x 10 −10 (from the relationship K a × K b = 10 −14), which certainly does not correspond to a strong base. The conjugate of a weak acid is often a weak base and vice versa.
On the other hand, if a chemical is a weak acid its conjugate base will not necessarily be strong. Consider that ethanoate, the conjugate base of ethanoic acid, has a base splitting constant (Kb) of about 5.6 × 10 −10, making it a weak base. In order for a species to have a strong conjugate base it has to be a very weak acid, like water.
Strong bases are leveling solvents for acids, weak bases are differentiating solvents for acids. In a leveling solvent, many acids are completely dissociated and are thus of the same strength. All acids tend to become indistinguishable in strength when dissolved in strongly basic solvents owing to the greater affinity of strong bases for protons.
The higher the proton affinity, the stronger the base and the weaker the conjugate acid in the gas phase.The (reportedly) strongest known base is the ortho-diethynylbenzene dianion (E pa = 1843 kJ/mol), [3] followed by the methanide anion (E pa = 1743 kJ/mol) and the hydride ion (E pa = 1675 kJ/mol), [4] making methane the weakest proton acid [5] in the gas phase, followed by dihydrogen.
A weak acid may be defined as an acid with pK a greater than about −2. An acid with pK a = −2 would be 99 % dissociated at pH 0, that is, in a 1 M HCl solution. Any acid with a pK a less than about −2 is said to be a strong acid. Strong acids are said to be fully dissociated.
For example, hydrochloric acid, HCl, is a strong acid. HCl(aq) → H + (aq) + Cl − (aq) A strong base is one that is fully dissociated in aqueous solution. For example, sodium hydroxide, NaOH, is a strong base. NaOH(aq) → Na + (aq) + OH − (aq) Therefore, when a strong acid reacts with a strong base the neutralization reaction can be ...
In general, organic acids are weak acids and do not dissociate completely in water, whereas the strong mineral acids do. Lower molecular mass organic acids such as formic and lactic acids are miscible in water, but higher molecular mass organic acids, such as benzoic acid, are insoluble in molecular (neutral) form.
In water, measurable pK a values range from about −2 for a strong acid to about 12 for a very weak acid (or strong base). A buffer solution of a desired pH can be prepared as a mixture of a weak acid and its conjugate base. In practice, the mixture can be created by dissolving the acid in water, and adding the requisite amount of strong acid ...