Search results
Results from the WOW.Com Content Network
Megagametogenesis is the process of maturation of the female gametophyte, or megagametophyte, in plants. [1] During the process of megagametogenesis, the megaspore, which arises from megasporogenesis, develops into the embryonic sac, in which the female gamete is housed. [2]
Cell division in prokaryotes (binary fission) and eukaryotes (mitosis and meiosis). The thick lines are chromosomes, and the thin blue lines are fibers pulling on the chromosomes and pushing the ends of the cell apart. The cell cycle in eukaryotes: I = Interphase, M = Mitosis, G 0 = Gap 0, G 1 = Gap 1, G 2 = Gap 2, S = Synthesis, G 3 = Gap 3.
Gametogenesis is a biological process by which diploid or haploid precursor cells undergo cell division and differentiation to form mature haploid gametes.Depending on the biological life cycle of the organism, gametogenesis occurs by meiotic division of diploid gametocytes into various gametes, or by mitosis.
Corn smut is a plant disease caused by the pathogenic fungus Mycosarcoma maydis, synonym Ustilago maydis.One of several cereal crop pathogens called smut, the fungus forms galls on all above-ground parts of corn species such as maize and teosinte.
Microgametogenesis is the process in plant reproduction where a microgametophyte develops in a pollen grain to the three-celled stage of its development. In flowering plants it occurs with a microspore mother cell inside the anther of the plant.
Mitotic recombination is a type of genetic recombination that may occur in somatic cells during their preparation for mitosis in both sexual and asexual organisms. In asexual organisms, the study of mitotic recombination is one way to understand genetic linkage because it is the only source of recombination within an individual. [1]
Both haploid and diploid yeast cells reproduce by mitosis, in which daughter cells bud from mother cells. Haploid cells are capable of mating with other haploid cells of the opposite mating type (an a cell can only mate with an α cell and vice versa) to produce a stable diploid cell.
A cellular model is a mathematical model of aspects of a biological cell, for the purposes of in silico research. Developing such models has been a task of systems biology and mathematical biology .