Search results
Results from the WOW.Com Content Network
In contrast to a DNA damage, a mutation is an alteration of the base sequence of the DNA. Ordinarily, a mutation cannot be recognized by enzymes once the base change is present in both DNA strands, and thus a mutation is not ordinarily repaired. At the cellular level, mutations can alter protein function and regulation. Unlike DNA damages ...
In genetics and especially genetic engineering, deletion mapping is a technique used to find out the mutation sites within a gene.. The principle of deletion mapping involves crossing a strain which has a point mutation in a gene, with multiple strains who each carry a deletion in a different region of the same gene.
Site-directed mutagenesis is used to generate mutations that may produce a rationally designed protein that has improved or special properties (i.e.protein engineering). Investigative tools – specific mutations in DNA allow the function and properties of a DNA sequence or a protein to be investigated in a rational approach. Furthermore ...
DNA may be modified, either naturally or artificially, by a number of physical, chemical and biological agents, resulting in mutations. Hermann Muller found that "high temperatures" have the ability to mutate genes in the early 1920s, [2] and in 1927, demonstrated a causal link to mutation upon experimenting with an x-ray machine, noting phylogenetic changes when irradiating fruit flies with ...
A point mutation is a genetic mutation where a single nucleotide base is changed, inserted or deleted from a DNA or RNA sequence of an organism's genome. [1] Point mutations have a variety of effects on the downstream protein product—consequences that are moderately predictable based upon the specifics of the mutation.
Slipped strand mispairing (SSM, also known as replication slippage) is a mutation process which occurs during DNA replication. It involves denaturation and displacement of the DNA strands, resulting in mispairing of the complementary bases. Slipped strand mispairing is one explanation for the origin and evolution of repetitive DNA sequences. [1]
(ii) In the context of nucleotide changes in DNA sequences, transition is a specific term for the exchange between either the two purines (A ↔ G) or the two pyrimidines (C ↔ T) (for additional details, see the article about transitions in genetics). By contrast, an exchange between one purine and one pyrimidine is called a transversion.
RNA viruses have fewer overlapping genes than DNA viruses which possess lower mutation rates and less restrictive genome sizes. [37] [38] The lower mutation rate of DNA viruses facilitates greater genomic novelty and evolutionary exploration within a structurally constrained genome and may be the primary driver of the evolution of overlapping ...