Search results
Results from the WOW.Com Content Network
The Microsoft Windows platform specific Cryptographic Application Programming Interface (also known variously as CryptoAPI, Microsoft Cryptography API, MS-CAPI or simply CAPI) is an application programming interface included with Microsoft Windows operating systems that provides services to enable developers to secure Windows-based applications using cryptography.
The CAPI/CSP architecture had its origins in the era of restrictive US government controls on the export of cryptography. Microsoft's default or "base" CSP then included with Windows was limited to 512-bit RSA public-key cryptography and 40-bit symmetric cryptography, the maximum key lengths permitted in exportable mass market software at the time.
For example, attackers might compromise a certificate authority, and then mis-issue certificates for a web origin. To combat this risk, the HTTPS web server serves a list of “pinned” public key hashes valid for a given time; on subsequent connections, during that validity time, clients expect the server to use one or more of those public ...
The CSP establishes a mechanism to uniquely identify each subscriber and the associated tokens and credentials issued to that subscriber. The CSP registers or gives the subscriber a token to be used in an authentication protocol and issues credentials as needed to bind that token to the identity, or to bind the identity to some other useful verified attribute.
This table denotes, if a cryptography library provides the technical requisites for FIPS 140, and the status of their FIPS 140 certification (according to NIST's CMVP search, [27] modules in process list [28] and implementation under test list).
Algorithm Output size (bits) Internal state size [note 1] Block size Length size Word size Rounds; BLAKE2b: 512 512 1024 128 [note 2]: 64 12 BLAKE2s: 256 256 512 64 [note 3]: 32 10
In cryptography, a critical security parameter (CSP) [1] is information that is either user or system defined and is used to operate a cryptography module in processing encryption functions including cryptographic keys and authentication data, such as passwords, the disclosure or modification of which can compromise the security of a cryptographic module or the security of the information ...
BLAKE was submitted to the NIST hash function competition by Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. In 2008, there were 51 entries. BLAKE made it to the final round consisting of five candidates but lost to Keccak in 2012, which was selected for the SHA-3 algorithm.