enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.

  3. The geometry and topology of three-manifolds - Wikipedia

    en.wikipedia.org/wiki/The_geometry_and_topology...

    Later the Geometry Center at the University of Minnesota sold a loosely bound copy of the notes. In 2002, Sheila Newbery typed the notes in TeX and made a PDF file of the notes available, which can be downloaded from MSRI using the links below. The book (Thurston 1997) is an expanded version of the first three chapters of the notes. In 2022 the ...

  4. Introduction to 3-Manifolds - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_3-Manifolds

    Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ...

  5. Timeline of manifolds - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_manifolds

    Manifolds in contemporary mathematics come in a number of types. These include: smooth manifolds, which are basic in calculus in several variables, mathematical analysis and differential geometry; piecewise-linear manifolds; topological manifolds. There are also related classes, such as homology manifolds and orbifolds, that resemble manifolds.

  6. G-structure on a manifold - Wikipedia

    en.wikipedia.org/wiki/G-structure_on_a_manifold

    In differential geometry, a G-structure on an n-manifold M, for a given structure group [1] G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M.. The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields.

  7. Classification of manifolds - Wikipedia

    en.wikipedia.org/wiki/Classification_of_manifolds

    There are two usual ways to give a classification: explicitly, by an enumeration, or implicitly, in terms of invariants. For instance, for orientable surfaces, the classification of surfaces enumerates them as the connected sum of tori, and an invariant that classifies them is the genus or Euler characteristic.

  8. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    Spivak, Michael (1999) A Comprehensive Introduction to Differential Geometry (3rd edition) Publish or Perish Inc. Encyclopedic five-volume series presenting a systematic treatment of the theory of manifolds, Riemannian geometry, classical differential geometry, and numerous other topics at the first- and second-year graduate levels.

  9. Category:Structures on manifolds - Wikipedia

    en.wikipedia.org/wiki/Category:Structures_on...

    There are three main types of structures important on manifolds. The foundational geometric structures are piecewise linear, mostly studied in geometric topology, and smooth manifold structures on a given topological manifold, which are the concern of differential topology as far as classification goes. Building on a smooth structure, there are: