Search results
Results from the WOW.Com Content Network
[1] [2] The term Chebyshev's inequality may also refer to Markov's inequality, especially in the context of analysis. They are closely related, and some authors refer to Markov's inequality as "Chebyshev's First Inequality," and the similar one referred to on this page as "Chebyshev's Second Inequality."
In probability theory, the multidimensional Chebyshev's inequality [1] is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.
Chebyshev's theorem is any of several theorems proven by Russian mathematician Pafnuty Chebyshev. Bertrand's postulate, that for every n there is a prime between n and 2n. Chebyshev's inequality, on the range of standard deviations around the mean, in statistics; Chebyshev's sum inequality, about sums and products of decreasing sequences
In mathematics, Chebyshev's sum inequality, named after Pafnuty Chebyshev, states that if ...
Let P 0,P 1, ...,P m be the first m + 1 orthogonal polynomials [clarification needed] with respect to μ ∈ C, and let ξ 1,...ξ m be the zeros of P m. It is not hard to see that the polynomials P 0 , P 1 , ..., P m -1 and the numbers ξ 1 ,... ξ m are the same for every μ ∈ C , and therefore are determined uniquely by m 0 ,..., m 2 m -1 .
Brezis–Gallouet inequality; Carleman's inequality; Chebyshev–Markov–Stieltjes inequalities; Chebyshev's sum inequality; Clarkson's inequalities; Eilenberg's inequality; Fekete–Szegő inequality; Fenchel's inequality; Friedrichs's inequality; Gagliardo–Nirenberg interpolation inequality; Gårding's inequality; Grothendieck inequality ...
While the inequality is often attributed to Francesco Paolo Cantelli who published it in 1928, [4] it originates in Chebyshev's work of 1874. [5] When bounding the event random variable deviates from its mean in only one direction (positive or negative), Cantelli's inequality gives an improvement over Chebyshev's inequality. The Chebyshev ...
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code