enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of integrals of irrational functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For a complete list of integral functions, see lists of integrals. Throughout this article the constant of integration is omitted for brevity. Integrals involving r = √ a 2 + x 2

  3. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [ 1 ] Generally, if the function sin ⁡ x {\displaystyle \sin x} is any trigonometric function, and cos ⁡ x {\displaystyle \cos x} is its derivative,

  4. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    Leonhard Euler used it to evaluate the integral / (+ ⁡) in his 1768 integral calculus textbook, [3] and Adrien-Marie Legendre described the general method in 1817. [ 4 ] The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [ 5 ]

  5. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.

  6. Trigonometric integral - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_integral

    Since sinc is an even entire function (holomorphic over the entire complex plane), Si is entire, odd, and the integral in its definition can be taken along any path connecting the endpoints. By definition, Si(x) is the antiderivative of sin x / x whose value is zero at x = 0, and si(x) is the antiderivative whose value is zero at x = ∞.

  7. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    For a definite integral, one must figure out how the bounds of integration change. For example, as x {\displaystyle x} goes from 0 {\displaystyle 0} to a / 2 , {\displaystyle a/2,} then sin ⁡ θ {\displaystyle \sin \theta } goes from 0 {\displaystyle 0} to 1 / 2 , {\displaystyle 1/2,} so θ {\displaystyle \theta } goes from 0 {\displaystyle 0 ...

  8. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2 ⁡ x cos ⁡ 4 x d x = − 1 24 sin ⁡ 6 x + 1 8 sin ⁡ 4 x − 1 8 sin ⁡ 2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...

  9. List of integrals of inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration. For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions.