Search results
Results from the WOW.Com Content Network
Messenger RNA (mRNA) is the type of RNA that carries information from DNA to the ribosome, the sites of protein synthesis (translation) in the cell cytoplasm. The coding sequence of the mRNA determines the amino acid sequence in the protein that is produced. [ 27 ]
In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is ...
The A form occurs under non-physiological conditions in partly dehydrated samples of DNA, while in the cell it may be produced in hybrid pairings of DNA and RNA strands, and in enzyme-DNA complexes. [54] [55] Segments of DNA where the bases have been chemically modified by methylation may undergo a larger change in conformation and adopt the Z ...
All living cells contain both DNA and RNA (except some cells such as mature red blood cells), while viruses contain either DNA or RNA, but usually not both. [15] The basic component of biological nucleic acids is the nucleotide, each of which contains a pentose sugar (ribose or deoxyribose), a phosphate group, and a nucleobase. [16]
Selected portions of the DNA nucleotide sequence are copied into a corresponding RNA nucleotide sequence, which either encodes a protein (if it is an mRNA) or forms a 'structural' RNA, such as a transfer RNA (tRNA) or ribosomal RNA (rRNA) molecule. Each region of the DNA helix that produces a functional RNA molecule constitutes a gene. [15]
Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics.Commonly made in the laboratory by solid-phase chemical synthesis, [1] these small fragments of nucleic acids can be manufactured as single-stranded molecules with any user-specified sequence, and so are vital for artificial gene synthesis, polymerase ...
In general gene expression is regulated through changes [44] in the number and type of interactions between molecules [45] that collectively influence transcription of DNA [46] and translation of RNA. [47] Some simple examples of where gene expression is important are: Control of insulin expression so it gives a signal for blood glucose regulation.
It is unlikely, however, that a transcription factor will bind all compatible sequences in the genome of the cell. Other constraints, such as DNA accessibility in the cell or availability of cofactors may also help dictate where a transcription factor will actually bind. Thus, given the genome sequence, it is still difficult to predict where a ...