Search results
Results from the WOW.Com Content Network
In software engineering, a class diagram [1] in the Unified Modeling Language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, operations (or methods), and the relationships among objects. The class diagram is the main building block of object-oriented modeling.
The objects that are related via the association are considered to act in a role with respect to the association, if object's current state in the active situation allows the other associated objects to use the object in the manner specified by the role. A role can be used to distinguish two objects of the same class when describing its use in ...
Examples includes various kinds of trees, DAGs, and graphs. Each node in a tree may be a branch or leaf; in other words, each node is a tree at the same time when it belongs to another tree. In UML, recursive composition is depicted with an association, aggregation or composition of a class with itself.
Object/Class: A tight coupling or association of data structures with the methods or functions that act on the data. This is called a class, or object (an object is created based on a class). Each object serves a separate function. It is defined by its properties, what it is and what it can do.
Meta-modeling is the analysis, construction and development of the frames, rules, constraints, models and theories applicable and useful for the modeling in a predefined class of problems. The meta-data side of the diagram consists of a concept diagram. This is basically an adjusted class diagram as described in Booch, Rumbaugh and Jacobson (1999).
"An object diagram is a graph of instances, including objects and data values. A static object diagram is an instance of a class diagram; it shows a snapshot of the detailed state of a system at a point in time. The use of object diagrams is fairly limited, namely to show examples of data structure."
A class (), whose elements are called morphisms or maps or arrows. Each morphism f {\displaystyle f} has a source object a {\displaystyle a} and target object b {\displaystyle b} . The expression f : a ↦ b {\displaystyle f:a\mapsto b} , would be verbally stated as " f {\displaystyle f} is a morphism from a to b ".
In the above UML class diagram, the Director class doesn't create and assemble the ProductA1 and ProductB1 objects directly. Instead, the Director refers to the Builder interface for building (creating and assembling) the parts of a complex object, which makes the Director independent of which concrete classes are instantiated (which ...