Search results
Results from the WOW.Com Content Network
Reflex responses from such baroreceptor activity can trigger increases or decreases in the heart rate. Arterial baroreceptor sensory endings are simple, splayed nerve endings that lie in the tunica adventitia of the artery. An increase in the mean arterial pressure increases depolarization of these sensory endings, which results in action ...
These parasympathetic neurons send axons to the heart and parasympathetic activity slows cardiac pacemaking and thus heart rate. This parasympathetic activity is further increased during conditions of elevated blood pressure. The parasympathetic nervous system is primarily directed toward the heart. [citation needed]
The brain emits neurological signals of oscillating frequencies. The neural rhythms provide information on the steady-state conditions of healthy individuals. Variations in the neural rhythms provide evidence that a problem is present regarding physiologic regulation and help physicians to more quickly determine the underlying condition based ...
Neurogenic shock is a distributive type of shock resulting in hypotension (low blood pressure), often with bradycardia (slowed heart rate), caused by disruption of autonomic nervous system pathways. [1] It can occur after damage to the central nervous system, such as spinal cord injury and traumatic brain injury.
The cardiovascular centre affects changes to the heart rate by sending a nerve impulse to the cardiac pacemaker via two sets of nerves: sympathetic fibres, part of the autonomic nervous system, to make heart rate faster. the vagus nerve, part of the parasympathetic branch of the autonomic nervous system, to lower heart rate.
Blood pressure, heart rate, and cardiac output are measured by stretch receptors found in the carotid arteries. Nerves embed themselves within these receptors and when they detect stretching, they are stimulated and fire action potentials to the central nervous system. These impulses inhibit the constriction of blood vessels and lower the heart ...
This same sympathetic outflow is increased to the sinoatrial node in the atria, which causes increased heart rate/cardiac output. These cardiopulmonary receptors also inhibits vagal stimulation in the vasoconstrictor center of the medulla resulting in decreased release of angiotensin , aldosterone , and vasopressin .
' pain receptor ') is a sensory neuron that responds to damaging or potentially damaging stimuli by sending "possible threat" signals [1] [2] [3] to the spinal cord and the brain. The brain creates the sensation of pain to direct attention to the body part, so the threat can be mitigated; this process is called nociception.