Search results
Results from the WOW.Com Content Network
Einstein showed how the velocity of light in a moving medium is calculated, in the velocity-addition formula of special relativity. Einstein's theory of general relativity provides the solution to the other light-dragging effects, whereby the velocity of light is modified by the motion or the rotation of nearby masses.
In physics the Einstein-aether theory, also called aetheory, is the name coined in 2004 for a modification of general relativity that has a preferred reference frame and hence violates Lorentz invariance. These generally covariant theories describes a spacetime endowed with both a metric and a unit timelike vector field named the aether.
As historians such as John Stachel argue, Einstein's views on the "new aether" are not in conflict with his abandonment of the aether in 1905. As Einstein himself pointed out, no "substance" and no state of motion can be attributed to that new aether. [10] Einstein's use of the word "aether" found little support in the scientific community, and ...
The study of exact solutions of Einstein's field equations is one of the activities of cosmology. It leads to the prediction of black holes and to different models of evolution of the universe. One can also discover new solutions of the Einstein field equations via the method of orthonormal frames as pioneered by Ellis and MacCallum. [22]
1. First postulate (principle of relativity) The laws of physics take the same form in all inertial frames of reference.. 2. Second postulate (invariance of c) . As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.
Einstein's version of the experiment [15] presumed that one observer was sitting midway inside a speeding traincar and another was standing on a platform as the train moved past. As measured by the standing observer, the train is struck by two bolts of lightning simultaneously, but at different positions along the axis of train movement (back ...
The Gödel metric, also known as the Gödel solution or Gödel universe, is an exact solution, found in 1949 by Kurt Gödel, [1] of the Einstein field equations in which the stress–energy tensor contains two terms: the first representing the matter density of a homogeneous distribution of swirling dust particles (see dust solution), and the second associated with a negative cosmological ...
To reproduce Fresnel's dragging coefficient (and therefore to explain the Fizeau experiment) he argued that the aether is completely dragged within a medium – i.e. the aether gets condensed when it enters the medium and rarefied when it leaves it again, which modifies the speed of the aether as well as that of light and leads to the same ...