Search results
Results from the WOW.Com Content Network
Suppose G is a finite group of order n, and d is a divisor of n.The number of order d elements in G is a multiple of φ(d) (possibly zero), where φ is Euler's totient function, giving the number of positive integers no larger than d and coprime to it.
In detail, the space of homomorphisms from G to the (cyclic) group of order p, (, /), is a vector space over the finite field = /. A non-trivial such map has as kernel a normal subgroup of index p, and multiplying the map by an element of ( Z / p ) × {\displaystyle (\mathbf {Z} /p)^{\times }} (a non-zero number mod p ) does not change the ...
In mathematics, specifically group theory, Cauchy's theorem states that if G is a finite group and p is a prime number dividing the order of G (the number of elements in G), then G contains an element of order p.
A group with finite order is called a finite group. order of a group element The order of an element g of a group G is the smallest positive integer n such that g n = e. If no such integer exists, then the order of g is said to be infinite. The order of a finite group is divisible by the order of every element.
Burnside's p a q b theorem states that if the order of a group is the product of one or two prime powers, then it is solvable, and so the group is not simple, or is of prime order and is cyclic. This rules out every group up to order 30 (= 2 · 3 · 5). If G is simple, and |G| = 30, then n 3 must divide 10 ( = 2 · 5), and n 3 must equal 1 (mod 3).
In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p.That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of p n copies of g, and not fewer, is equal to the identity element.
The minimal degree of a faithful complex representation is 47 × 59 × 71 = 196,883, hence is the product of the three largest prime divisors of the order of M. The smallest faithful linear representation over any field has dimension 196,882 over the field with two elements, only one less than the dimension of the smallest faithful complex representation.
Group theory has three main historical sources: number theory, the theory of algebraic equations, and geometry.The number-theoretic strand was begun by Leonhard Euler, and developed by Gauss's work on modular arithmetic and additive and multiplicative groups related to quadratic fields.