Search results
Results from the WOW.Com Content Network
A heterotroph (/ ˈ h ɛ t ər ə ˌ t r oʊ f,-ˌ t r ɒ f /; [1] [2] from Ancient Greek ἕτερος (héteros) 'other' and τροφή (trophḗ) 'nutrition') is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are ...
All eukaryotes except for green plants and algae are unable to manufacture their own food: They obtain food from other organisms. This mode of nutrition is also known as heterotrophic nutrition . All heterotrophs (except blood and gut parasites ) have to convert solid food into soluble compounds which are capable of being absorbed (digestion).
An example is the koala, because it feeds only on eucalyptus leaves. Primary consumers that feed on many kinds of plants are called generalists. Secondary consumers are small/medium-sized carnivores that prey on herbivorous animals. Omnivores, which feed on both plants and animals, can be considered as being both primary and secondary consumers.
The largest living land animal, the African bush elephant, is a herbivore. This is a list of herbivorous animals, organized in a roughly taxonomic manner. In general, entries consist of animal species known with good certainty to be overwhelmingly herbivorous, as well as genera and families which contain a preponderance of such species.
[2] Plant tissues are made up of resilient molecules (e.g. cellulose, lignin, xylan) that decay at a much lower rate than other organic molecules. The activity of detritivores is the reason why we do not see an accumulation of plant litter in nature. [2] [3] Two Adonis blue butterflies lap at a small lump of feces lying on a rock.
There are different ecological dimensions that can be mapped to create more complicated food webs, including: species composition (type of species), richness (number of species), biomass (the dry weight of plants and animals), productivity (rates of conversion of energy and nutrients into growth), and stability (food webs over time). A food web ...
For example, most plants are photolithoautotrophic, since they use light as an energy source, water as electron donor, and CO 2 as a carbon source. All animals and fungi are chemoorganoheterotrophic , since they use organic substances both as chemical energy sources and as electron/hydrogen donors and carbon sources.
Specifically, "trophic mutualism" refers to the transfer of energy and nutrients between two species. This is also sometimes known as resource-to-resource mutualism. Trophic mutualism often occurs between an autotroph and a heterotroph. [1] Although there are many examples of trophic mutualisms, the heterotroph is generally a fungus or bacteria.