enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normalization (image processing) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(image...

    max is the maximum value for color level in the input image within the selected kernel. min is the minimum value for color level in the input image within the selected kernel. [4] Local contrast stretching considers each range of color palate in the image (R, G, and B) separately, providing a set of minimum and maximum values for each color palate.

  3. Histogram matching - Wikipedia

    en.wikipedia.org/wiki/Histogram_matching

    It has a probability density function p r (r), where r is a grayscale value, and p r (r) is the probability of that value. This probability can easily be computed from the histogram of the image by = Where n j is the frequency of the grayscale value r j, and n is the total number of pixels in the image.

  4. A foolproof guide to image manipulation in Python with OpenCV

    www.aol.com/foolproof-guide-image-manipulation...

    OpenCV is a huge image and video processing library designed to work with many languages such as python, C/C++, Java, and more. It is the foundation for many of the applications you know that deal ...

  5. Co-occurrence matrix - Wikipedia

    en.wikipedia.org/wiki/Co-occurrence_matrix

    A co-occurrence matrix or co-occurrence distribution (also referred to as : gray-level co-occurrence matrices GLCMs) is a matrix that is defined over an image to be the distribution of co-occurring pixel values (grayscale values, or colors) at a given offset. It is used as an approach to texture analysis with various applications especially in ...

  6. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    In computer vision, the bag-of-words model (BoW model) sometimes called bag-of-visual-words model [1] [2] can be applied to image classification or retrieval, by treating image features as words. In document classification , a bag of words is a sparse vector of occurrence counts of words; that is, a sparse histogram over the vocabulary.

  7. Connected-component labeling - Wikipedia

    en.wikipedia.org/wiki/Connected-component_labeling

    Connected-component labeling (CCL), connected-component analysis (CCA), blob extraction, region labeling, blob discovery, or region extraction is an algorithmic application of graph theory, where subsets of connected components are uniquely labeled based on a given heuristic.

  8. Thresholding (image processing) - Wikipedia

    en.wikipedia.org/wiki/Thresholding_(image...

    The simplest thresholding methods replace each pixel in an image with a black pixel if the image intensity , is less than a fixed value called the threshold , or a white pixel if the pixel intensity is greater than that threshold. In the example image on the right, this results in the dark tree becoming completely black, and the bright snow ...

  9. Top-hat transform - Wikipedia

    en.wikipedia.org/wiki/Top-hat_transform

    In mathematical morphology and digital image processing, a top-hat transform is an operation that extracts small elements and details from given images.There exist two types of top-hat transform: the white top-hat transform is defined as the difference between the input image and its opening by some structuring element, while the black top-hat transform is defined dually as the difference ...