Search results
Results from the WOW.Com Content Network
The term pound of thrust is an alternative name for pound-force in specific contexts. It is frequently seen in US sources on jet engines and rocketry, some of which continue to use the FPS notation. It is frequently seen in US sources on jet engines and rocketry, some of which continue to use the FPS notation.
The thrust-to-weight ratio is usually calculated from initial gross weight at sea level on earth [6] and is sometimes called thrust-to-Earth-weight ratio. [7] The thrust-to-Earth-weight ratio of a rocket or rocket-propelled vehicle is an indicator of its acceleration expressed in multiples of earth's gravitational acceleration, g 0. [5]
Pound (force) – Earth's gravitational pull on a one-pound mass "Pound of thrust": thrust (force) required to accelerate one pound at one g; Stream thrust averaging – Process to convert 3D flow into 1D; Thrust-to-weight ratio – Dimensionless ratio of thrust to weight of a jet or propeller engine
TSFC or SFC for thrust engines (e.g. turbojets, turbofans, ramjets, rockets, etc.) is the mass of fuel needed to provide the net thrust for a given period e.g. lb/(h·lbf) (pounds of fuel per hour-pound of thrust) or g/(s·kN) (grams of fuel per second-kilonewton). Mass of fuel is used, rather than volume (gallons or litres) for the fuel ...
Thrust is the force supplied by the engine and depends on the propellant mass flow through the engine. Specific impulse measures the thrust per propellant mass flow. Thrust and specific impulse are related by the design and propellants of the engine in question, but this relationship is tenuous: in most cases, high thrust and high specific ...
The type of jet engine used to explain the conversion of fuel into thrust is the ramjet.It is simpler than the turbojet which is, in turn, simpler than the turbofan.It is valid to use the ramjet example because the ramjet, turbojet and turbofan core all use the same principle to produce thrust which is to accelerate the air passing through them.
As an example, an early turbojet, the Bristol Olympus Mk. 101, had a momentum thrust of 9300 lb. and a pressure thrust of 1800 lb. giving a total of 11,100 lb. [1] Looking inside the "black box" shows that the thrust results from all the unbalanced momentum and pressure forces created within the engine itself. [2]
By definition, it is the total impulse (or change in momentum) delivered per unit of propellant consumed [4] and is dimensionally equivalent to the generated thrust divided by the propellant mass flow rate or weight flow rate. [5] If mass (kilogram, pound-mass, or slug) is used as the unit of propellant, then specific impulse has units of velocity.