enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Splay trees and treaps are self-balancing but not height-balanced, as their height is not guaranteed to be logarithmic in the number of items. Self-balancing binary search trees provide efficient implementations for mutable ordered lists , and can be used for other abstract data structures such as associative arrays , priority queues and sets .

  3. Skip list - Wikipedia

    en.wikipedia.org/wiki/Skip_list

    A skip list does not provide the same absolute worst-case performance guarantees as more traditional balanced tree data structures, because it is always possible (though with very low probability [5]) that the coin-flips used to build the skip list will produce a badly balanced structure. However, they work well in practice, and the randomized ...

  4. Weight-balanced tree - Wikipedia

    en.wikipedia.org/wiki/Weight-balanced_tree

    Based on the new functions for union, intersection or difference, either one key or multiple keys can be inserted to or deleted from the weight-balanced tree. Since Split and Union call Join but do not deal with the balancing criteria of weight-balanced trees directly, such an implementation is usually called the join-based algorithms.

  5. Optimal binary search tree - Wikipedia

    en.wikipedia.org/wiki/Optimal_binary_search_tree

    In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-balanced binary tree, [1] is a binary search tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities). Optimal BSTs are generally divided into two types: static and dynamic.

  6. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.

  7. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    For example, the ordered tree on the left and the binary tree on the right correspond: An example of converting an n-ary tree to a binary tree. In the pictured binary tree, the black, left, edges represent first child, while the blue, right, edges represent next sibling. This representation is called a left-child right-sibling binary tree.

  8. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    A B-tree of depth n+1 can hold about U times as many items as a B-tree of depth n, but the cost of search, insert, and delete operations grows with the depth of the tree. As with any balanced tree, the cost grows much more slowly than the number of elements.

  9. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.