enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Self-balancing binary trees solve this problem by performing transformations on the tree (such as tree rotations) at key insertion times, in order to keep the height proportional to log 2 (n). Although a certain overhead is involved, it is not bigger than the always necessary lookup cost and may be justified by ensuring fast execution of all ...

  3. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    The AVL tree is named after its two Soviet inventors, Georgy Adelson-Velsky and Evgenii Landis, who published it in their 1962 paper "An algorithm for the organization of information". [2] It is the first self-balancing binary search tree data structure to be invented. [3]

  4. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    In computer science, a B-tree is a self-balancing tree data structure that maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree generalizes the binary search tree , allowing for nodes with more than two children. [ 2 ]

  5. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Various height-balanced binary search trees were introduced to confine the tree height, such as AVL trees, Treaps, and red–black trees. [5] The AVL tree was invented by Georgy Adelson-Velsky and Evgenii Landis in 1962 for the efficient organization of information. [6] [7] It was the first self-balancing binary search tree to be invented. [8]

  6. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    Tree rotations are very common internal operations on self-balancing binary trees. There are a variety of different operations that can be performed on binary trees. Some are mutator operations, while others simply return useful information about the tree.

  7. Weight-balanced tree - Wikipedia

    en.wikipedia.org/wiki/Weight-balanced_tree

    In computer science, weight-balanced binary trees (WBTs) are a type of self-balancing binary search trees that can be used to implement dynamic sets, dictionaries (maps) and sequences. [1] These trees were introduced by Nievergelt and Reingold in the 1970s as trees of bounded balance, or BB[α] trees. [2] [3] Their more common name is due to ...

  8. Join-based tree algorithms - Wikipedia

    en.wikipedia.org/wiki/Join-based_tree_algorithms

    In computer science, join-based tree algorithms are a class of algorithms for self-balancing binary search trees. This framework aims at designing highly-parallelized algorithms for various balanced binary search trees. The algorithmic framework is based on a single operation join. [1]

  9. Red–black tree - Wikipedia

    en.wikipedia.org/wiki/Red–black_tree

    In computer science, a red–black tree is a self-balancing binary search tree data structure noted for fast storage and retrieval of ordered information. The nodes in a red-black tree hold an extra "color" bit, often drawn as red and black, which help ensure that the tree is always approximately balanced.