enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normalization (image processing) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(image...

    max is the maximum value for color level in the input image within the selected kernel. min is the minimum value for color level in the input image within the selected kernel. [4] Local contrast stretching considers each range of color palate in the image (R, G, and B) separately, providing a set of minimum and maximum values for each color palate.

  3. Top-hat transform - Wikipedia

    en.wikipedia.org/wiki/Top-hat_transform

    In mathematical morphology and digital image processing, a top-hat transform is an operation that extracts small elements and details from given images.There exist two types of top-hat transform: the white top-hat transform is defined as the difference between the input image and its opening by some structuring element, while the black top-hat transform is defined dually as the difference ...

  4. Grayscale - Wikipedia

    en.wikipedia.org/wiki/Grayscale

    Grayscale images are distinct from one-bit bi-tonal black-and-white images, which, in the context of computer imaging, are images with only two colors: black and white (also called bilevel or binary images). Grayscale images have many shades of gray in between. Grayscale images can be the result of measuring the intensity of light at each pixel ...

  5. Channel (digital image) - Wikipedia

    en.wikipedia.org/wiki/Channel_(digital_image)

    A channel in this context is the grayscale image of the same size as a color image, [citation needed] made of just one of these primary colors. For instance, an image from a standard digital camera will have a red, green and blue channel. A grayscale image has just one channel.

  6. Integral channel feature - Wikipedia

    en.wikipedia.org/wiki/Integral_channel_feature

    % Note if input image I was already a grayscale image, grayscale channel % would have simply been equal to input image, i.e., gray channel = I gray_channel = rgb2gray (I); It is clear from the above examples that a channel can be generated by either simply extracting specific information from the original image or by manipulating the input ...

  7. Harris corner detector - Wikipedia

    en.wikipedia.org/wiki/Harris_corner_detector

    If we use Harris corner detector in a color image, the first step is to convert it into a grayscale image, which will enhance the processing speed. The value of the gray scale pixel can be computed as a weighted sums of the values R, B and G of the color image, {,,}, where, e.g.,

  8. OpenCV - Wikipedia

    en.wikipedia.org/wiki/OpenCV

    The first alpha version of OpenCV was released to the public at the IEEE Conference on Computer Vision and Pattern Recognition in 2000, and five betas were released between 2001 and 2005. The first 1.0 version was released in 2006. A version 1.1 "pre-release" was released in October 2008. The second major release of the OpenCV was in October 2009.

  9. Histogram matching - Wikipedia

    en.wikipedia.org/wiki/Histogram_matching

    It has a probability density function p r (r), where r is a grayscale value, and p r (r) is the probability of that value. This probability can easily be computed from the histogram of the image by = Where n j is the frequency of the grayscale value r j, and n is the total number of pixels in the image.