Search results
Results from the WOW.Com Content Network
Escherichia virus T4 is a species of bacteriophages that infect Escherichia coli bacteria. It is a double-stranded DNA virus in the subfamily Tevenvirinae of the family Straboviridae. T4 is capable of undergoing only a lytic life cycle and not the lysogenic life cycle.
Structural model at atomic resolution of bacteriophage T4 [1] The structure of a typical myovirus bacteriophage Anatomy and infection cycle of bacteriophage T4.. A bacteriophage (/ b æ k ˈ t ɪər i oʊ f eɪ dʒ /), also known informally as a phage (/ ˈ f eɪ dʒ /), is a virus that infects and replicates within bacteria and archaea.
The T4 rII system is an experimental system developed in the 1950s by Seymour Benzer for studying the substructure of the gene. The experimental system is based on genetic crosses of different mutant strains of bacteriophage T4 , a virus that infects the bacteria Escherichia coli .
Lysis inhibition: T4-like phages have two genes, rI and rIII, that inhibit the T4 holin, if the infected cell undergoes super-infection by another T4 (or closely related) virion. Repeated super-infection can cause the T4 infection to continue without lysis for hours, leading to accumulation of virions to levels 10-fold higher than normal.
Polynucleotide kinase is a T7 bacteriophage (or T4 bacteriophage) enzyme that catalyzes the transfer of a gamma-phosphate from ATP to the free hydroxyl end of the 5' DNA or RNA. The resulting product could be used to end-label DNA or RNA, or in ligation reactions.
LIN involves the antiholin rI protein of T4 (See TC# 1.E.8.1.1). [5] Lysis inhibition is an effective strategy to coordinate lysis timing with phage particle maturation and to exclude other phage. [6] The C-terminal periplasmic domain of T4 holin binds the periplasmic domain of T4 antiholin (RI; 97 aas) which like the holin, spans the membrane ...
Phage display cycle. 1) fusion proteins for a viral coat protein + the gene to be evolved (typically an antibody fragment) are expressed in bacteriophage. 2) the library of phage are washed over an immobilised target. 3) the remaining high-affinity binders are used to infect bacteria. 4) the genes encoding the high-affinity binders are isolated.
The bacteriophage (phage) T4 gyrase (type II topoismerase) is a multisubunit protein consisting of the products of genes 39, 52 and probably 60. [ 25 ] [ 26 ] It catalyses the relaxation of negatively or positively superhelical DNA and is employed in phage DNA replication during infection of the E. coli bacterial host. [ 27 ]