Ad
related to: optical properties of quantum dots
Search results
Results from the WOW.Com Content Network
Quantum dots have properties intermediate between bulk semiconductors and discrete atoms or molecules. Their optoelectronic properties change as a function of both size and shape. [6] [7] Larger QDs of 5–6 nm diameter emit longer wavelengths, with colors such as orange, or red. Smaller QDs (2–3 nm) emit shorter wavelengths, yielding colors ...
Silicon quantum dots are metal-free biologically compatible quantum dots with photoluminescence emission maxima that are tunable through the visible to near-infrared spectral regions. These quantum dots have unique properties arising from their indirect band gap , including long-lived luminescent excited-states and large Stokes shifts .
Graphene quantum dots (GQDs) are graphene nanoparticles with a size less than 100 nm. [1] Due to their exceptional properties such as low toxicity, stable photoluminescence , chemical stability and pronounced quantum confinement effect, GQDs are considered as a novel material for biological, opto-electronics, energy and environmental applications.
One of the "fascinating and unusual properties" of quantum dots is that they change light colour depending on the particle size, while keeping the atomic structure unchanged, said Johan Aqvist ...
A quantum dot single-photon source is based on a single quantum dot placed in an optical cavity. It is an on-demand single-photon source. A laser pulse can excite a pair of carriers known as an exciton in the quantum dot. The decay of a single exciton due to spontaneous emission leads to the emission of a single photon. Due to interactions ...
In an experiment using silicon quantum dots near the interface of the substrate and the quantum dots, the power conversion efficiency of the solar cell increased. Silicon quantum dots can also be used as optical labels and drug delivery detection systems, [25] in addition to being used detect formaldehyde in water. [26]
Quantum dots (QDs) are nano-scale semiconductor particles on the order of 2–10 nm in diameter. They possess electrical properties between those of bulk semi-conductors and individual molecules, as well as optical characteristics that make them suitable for applications where fluorescence is desirable, such as medical imaging.
A 10 Gbit/s quantum dot laser that is insensitive to temperature fluctuation for use in optical data communications and optical networks has been developed using this technology. The laser is capable of high-speed operation at 1.3 μm wavelengths, at temperatures from 20 °C to 70 °C. It works in optical data transmission systems, optical LANs ...
Ad
related to: optical properties of quantum dots