enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    In the binary system, each bit represents an increasing power of 2, with the rightmost bit representing 2 0, the next representing 2 1, then 2 2, and so on. The value of a binary number is the sum of the powers of 2 represented by each "1" bit. For example, the binary number 100101 is converted to decimal form as follows:

  3. Bit numbering - Wikipedia

    en.wikipedia.org/wiki/Bit_numbering

    For this reason, bit index is not affected by how the value is stored on the device, such as the value's byte order. Rather, it is a property of the numeric value in binary itself. This is often utilized in programming via bit shifting: A value of 1 << n corresponds to the n th bit of a binary integer (with a value of 2 n).

  4. Binary code - Wikipedia

    en.wikipedia.org/wiki/Binary_code

    The modern binary number system, the basis for binary code, is an invention by Gottfried Leibniz in 1689 and appears in his article Explication de l'Arithmétique Binaire (English: Explanation of the Binary Arithmetic) which uses only the characters 1 and 0, and some remarks on its usefulness. Leibniz's system uses 0 and 1, like the modern ...

  5. Binary data - Wikipedia

    en.wikipedia.org/wiki/Binary_data

    Like categorical data, binary data can be converted to a vector of count data by writing one coordinate for each possible value, and counting 1 for the value that occurs, and 0 for the value that does not occur. [2] For example, if the values are A and B, then the data set A, A, B can be represented in counts as (1, 0), (1, 0), (0, 1).

  6. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    an 11-bit binary exponent, using "excess-1023" format. Excess-1023 means the exponent appears as an unsigned binary integer from 0 to 2047; subtracting 1023 gives the actual signed value; a 52-bit significand, also an unsigned binary number, defining a fractional value with a leading implied "1" a sign bit, giving the sign of the number.

  7. Bit - Wikipedia

    en.wikipedia.org/wiki/Bit

    The name is a portmanteau of binary digit. [1] The bit represents a logical state with one of two possible values . These values are most commonly represented as either " 1 " or " 0 " , but other representations such as true / false , yes / no , on / off , or + / − are also widely used.

  8. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    However, a binary number system with base −2 is also possible. The rightmost bit represents (−2) 0 = +1, the next bit represents (−2) 1 = −2, the next bit (−2) 2 = +4 and so on, with alternating sign. The numbers that can be represented with four bits are shown in the comparison table below.

  9. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 ...