Search results
Results from the WOW.Com Content Network
In systems biology, live single-cell imaging is a live-cell imaging technique that combines traditional live-cell imaging and time-lapse microscopy techniques with automated cell tracking and feature extraction, drawing many techniques from high-content screening. It is used to study signalling dynamics and behaviour in populations of ...
A list of more than 100 different single cell sequencing (omics) methods have been published. [1] The large majority of methods are paired with short-read sequencing technologies, although some of them are compatible with long read sequencing.
This single cell shows the process of the central dogma of molecular biology, which are all steps researchers are interested to quantify (DNA, RNA, and Protein).. In cell biology, single-cell analysis and subcellular analysis [1] refer to the study of genomics, transcriptomics, proteomics, metabolomics, and cell–cell interactions at the level of an individual cell, as opposed to more ...
Schematic of the different single-cell multi-omic integration strategies. Adapted from Adossa et al., 2021 [1]. Single-cell multi-omics integration describes a suite of computational methods used to harmonize information from multiple "omes" to jointly analyze biological phenomena.
Time-lapse microscopy is the method that extends live-cell imaging from a single observation in time to the observation of cellular dynamics over long periods of time. [ 5 ] [ 6 ] Time-lapse microscopy is primarily used in research, but is clinically used in IVF clinics as studies has proven it to increase pregnancy rates, lower abortion rates ...
Ribbon diagrams, also known as Richardson diagrams, are 3D schematic representations of protein structure and are one of the most common methods of protein depiction used today. The ribbon depicts the general course and organisation of the protein backbone in 3D and serves as a visual framework for hanging details of the entire atomic structure ...
Live-cell imaging is the study of living cells using time-lapse microscopy. It is used by scientists to obtain a better understanding of biological function through the study of cellular dynamics. [1] Live-cell imaging was pioneered in the first decade of the 21st century.
Ultrastructure (or ultra-structure) is the architecture of cells and biomaterials that is visible at higher magnifications than found on a standard optical light microscope. This traditionally meant the resolution and magnification range of a conventional transmission electron microscope (TEM) when viewing biological specimens such as cells ...