Ad
related to: complete the square equation
Search results
Results from the WOW.Com Content Network
Completing the square is the oldest method of solving general quadratic equations, used in Old Babylonian clay tablets dating from 1800–1600 BCE, and is still taught in elementary algebra courses today.
To complete the square, form a squared binomial on the left-hand side of a quadratic equation, from which the solution can be found by taking the square root of both sides. The standard way to derive the quadratic formula is to apply the method of completing the square to the generic quadratic equation a x 2 + b x + c = 0 {\displaystyle ...
In mathematics, a quadratic equation (from Latin quadratus 'square') is an equation that can be rearranged in standard form as [1] + + =, where the variable x represents an unknown number, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)
The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated ...
A typical use of this is the completing the square method for getting the quadratic formula. Another example is the factorization of + If one introduces the non-real square root of –1, commonly denoted i, then one has a difference of squares + = (+) ().
It makes a smaller square from a larger square with a section left over. Thus look at the geometrical picture at the bottom: it is transforming x^2 + bx into the larger square — and is throwing in it's own confusion by treating this as having to do with a quadratic equation, rather than being purely a quadratic polynomial transformation.
In 628, the Indian mathematician Brahmagupta wrote Brāhmasphuṭasiddhānta, which includes, among many other things, a study of equations of the form x 2 − ny 2 = c. He considered what is now called Pell's equation, x 2 − ny 2 = 1, and found a method for its solution. [4] In Europe this problem was studied by Brouncker, Euler and Lagrange.
Rational trigonometry's triple-quad rule and triple-spread rule contain sums of squares, similar to Heron's formula. Squaring the square is a combinatorial problem of dividing a two-dimensional square with integer side length into smaller such squares.
Ad
related to: complete the square equation