enow.com Web Search

  1. Ads

    related to: neural networks and deep learning a textbook by charu c aggarwal pdf english

Search results

  1. Results from the WOW.Com Content Network
  2. History of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks.Their creation was inspired by biological neural circuitry. [1] [a] While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. [1]

  3. Amos Storkey - Wikipedia

    en.wikipedia.org/wiki/Amos_Storkey

    Convolutional neural network (CNN, or ConvNet) is a class of deep neural networks, most commonly applied to analyzing visual imagery. Their paper showed that a Convolutional Neural Network trained by supervised learning from a database of human professional games could outperform GNU Go and win some games against Monte Carlo tree search Fuego 1 ...

  4. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  6. Artificial Intelligence: A Modern Approach - Wikipedia

    en.wikipedia.org/wiki/Artificial_Intelligence:_A...

    The book's chapters span from classical AI topics like searching algorithms and first-order logic, propositional logic and probabilistic reasoning to advanced topics such as multi-agent systems, constraint satisfaction problems, optimization problems, artificial neural networks, deep learning, reinforcement learning, and computer vision. [7]

  7. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Networks such as the previous one are commonly called feedforward, because their graph is a directed acyclic graph. Networks with cycles are commonly called recurrent. Such networks are commonly depicted in the manner shown at the top of the figure, where is shown as dependent upon itself. However, an implied temporal dependence is not shown.

  8. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  9. Outline of artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Outline_of_artificial...

    Artificial neural networks [40] Network topology. feedforward neural networks [44] Perceptrons; Multi-layer perceptrons; Radial basis networks; Convolutional neural network; Recurrent neural networks [45] Long short-term memory [46] Hopfield networks [47] Attractor networks [47] Deep learning; Hybrid neural network; Learning algorithms for ...

  1. Ads

    related to: neural networks and deep learning a textbook by charu c aggarwal pdf english