Search results
Results from the WOW.Com Content Network
In frog embryos, gastrulation initiates at the site identified as the gray crescent, located on the future dorsal side of the embryo, slightly below the equatorial region. This process involves cells migrating inward to form a structure similar to a blastopore .
Embryo: 1 to 20 (about) Intracapsular. Development through cleavage, gastrulation, and appearance of neural tube and eventually gills and tail. Hatchling: 21 (about) to 24: Transition from relatively immobile embryo to an active, feeding tadpole. Specimens at these stages may sometimes be referred to as "larvae". Tadpole: 25 to 41
Cross section of a vertebrate embryo in the neurula stage. A neurula is a vertebrate embryo at the early stage of development in which neurulation occurs. The neurula stage is preceded by the gastrula stage; consequentially, neurulation is preceded by gastrulation. [1] Neurulation marks the beginning of the process of organogenesis. [2]
Diagram of stages of embryo development to a larval and adult stage. In developmental biology, animal embryonic development, also known as animal embryogenesis, is the developmental stage of an animal embryo. Embryonic development starts with the fertilization of an egg cell (ovum) by a sperm cell (spermatozoon). [1]
The primitive node (or primitive knot) is the organizer for gastrulation in most amniote embryos. In birds, it is known as Hensen's node, and in amphibians, it is known as the Spemann-Mangold organizer. It is induced by the Nieuwkoop center in amphibians, or by the posterior marginal zone in amniotes including birds.
Before gastrulation, the embryo is a continuous epithelial sheet of cells; by the end of gastrulation, the embryo has begun differentiation to establish distinct cell lineages, set up the basic axes of the body (e.g. dorsal–ventral, anterior–posterior), and internalized one or more cell types including the prospective gut. [2]
Frog (Xenopus), as well as other amphibian, gastrulation serves as an excellent example of the role of convergent extension in embryogenesis. During gastrulation in frogs, the driving force of convergent extension is the morphogenic activity of the presumptive dorsal mesodermal cells; this activity is driven by the mesenchymal cells that lie ...
An illustration of vegetal rotation movements. Vegetal rotation is a morphogenetic movement that drives mesoderm internalization during gastrulation in amphibian embryos. [1] The internalization of vegetal cells prior to gastrulation was first observed in the 1930s by Abraham Mandel Schechtman through the use of vital dye labeling experiments in Triturus torosus embryos. [2]