enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    ⁠ The vector ⁠ ⁠ can be characterized as a right-singular vector corresponding to a singular value of ⁠ ⁠ that is zero. This observation means that if ⁠ A {\displaystyle \mathbf {A} } ⁠ is a square matrix and has no vanishing singular value, the equation has no non-zero ⁠ x {\displaystyle \mathbf {x} } ⁠ as a solution.

  3. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  4. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The nilpotency of N can be exploited when calculating f(A) where f is a complex analytic function. For example, in principle the Jordan form could give a closed-form expression for the exponential exp(A). The number of Jordan blocks corresponding to λ i of size at least j is dim ker(A − λ i I) j − dim ker(A − λ i I) j−1.

  5. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.

  6. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin.

  7. Operator norm - Wikipedia

    en.wikipedia.org/wiki/Operator_norm

    In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm.Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces.

  8. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  9. Function space - Wikipedia

    en.wikipedia.org/wiki/Function_space

    Let F be a field and let X be any set. The functions X → F can be given the structure of a vector space over F where the operations are defined pointwise, that is, for any f, g : X → F, any x in X, and any c in F, define (+) = + () = When the domain X has additional structure, one might consider instead the subset (or subspace) of all such functions which respect that structure.