Search results
Results from the WOW.Com Content Network
In number theory, Artin's conjecture on primitive roots states that a given integer a that is neither a square number nor −1 is a primitive root modulo infinitely many primes p. The conjecture also ascribes an asymptotic density to these primes. This conjectural density equals Artin's constant or a rational multiple thereof.
In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.
Artin's conjecture on primitive roots: number theory: ⇐generalized Riemann hypothesis [2] ⇐Selberg conjecture B [3] Emil Artin: 325 Bateman–Horn conjecture: number theory: Paul T. Bateman and Roger Horn: 245 Baum–Connes conjecture: operator K-theory: ⇒Gromov-Lawson-Rosenberg conjecture [4] ⇒Kaplansky-Kadison conjecture [4] ⇒ ...
q-3, q-4, q-9, and, for q > 11, q-12 are primitive roots If p is a Sophie Germain prime greater than 3, then p must be congruent to 2 mod 3. For, if not, it would be congruent to 1 mod 3 and 2 p + 1 would be congruent to 3 mod 3, impossible for a prime number. [ 16 ]
This sequence is the set of primes p such that 10 is a primitive root modulo p. Artin's conjecture on primitive roots is that this sequence contains 37.395...% of the primes. Binary full reptend primes
Artin's conjecture on primitive roots; The (now proved) conjecture that finite fields are quasi-algebraically closed; see Chevalley–Warning theorem; The (now disproved) conjecture that any algebraic form over the p-adics of degree d in more than d 2 variables represents zero: that is, that all p-adic fields are C 2; see Ax–Kochen theorem or ...
Agrawal's conjecture; Andrica's conjecture; Artin's conjecture on primitive roots; B. Bateman–Horn conjecture; Brocard's conjecture; Bunyakovsky conjecture; C ...
By analytic continuation, this function can be extended to a meromorphic function (only when is primitive) defined on the whole complex plane. The generalized Riemann hypothesis asserts that, for every Dirichlet character χ and every complex number s with L ( χ , s ) = 0 , if s is not a negative real number, then the real part of s is 1/2.