enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Artin's conjecture on primitive roots - Wikipedia

    en.wikipedia.org/wiki/Artin's_conjecture_on...

    Without the generalized Riemann hypothesis, there is no single value of a for which Artin's conjecture is proved. D. R. Heath-Brown proved in 1986 (Corollary 1) that at least one of 2, 3, or 5 is a primitive root modulo infinitely many primes p. [3] He also proved (Corollary 2) that there are at most two primes for which Artin's conjecture fails.

  3. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Weisstein, Eric W. "Primitive Root". MathWorld. Web-based tool to interactively compute group tables by John Jones; OEIS sequence A033948 (Numbers that have a primitive root (the multiplicative group modulo n is cyclic)) Numbers n such that the multiplicative group modulo n is the direct product of k cyclic groups:

  5. Artin conjecture - Wikipedia

    en.wikipedia.org/wiki/Artin_conjecture

    Artin's conjecture on primitive roots; The (now proved) conjecture that finite fields are quasi-algebraically closed; see Chevalley–Warning theorem; The (now disproved) conjecture that any algebraic form over the p-adics of degree d in more than d 2 variables represents zero: that is, that all p-adic fields are C 2; see Ax–Kochen theorem or ...

  6. Carmichael function - Wikipedia

    en.wikipedia.org/wiki/Carmichael_function

    Theorem 2 — For every positive integer n there exists a primitive λ-root modulo n. Moreover, if g is such a root, then there are φ ( λ ( n ) ) {\displaystyle \varphi (\lambda (n))} primitive λ -roots that are congruent to powers of g .

  7. Generalized Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Generalized_Riemann_hypothesis

    By analytic continuation, this function can be extended to a meromorphic function (only when is primitive) defined on the whole complex plane. The generalized Riemann hypothesis asserts that, for every Dirichlet character χ and every complex number s with L ( χ , s ) = 0 , if s is not a negative real number, then the real part of s is 1/2.

  8. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    In particular, is irreducible if and only if p is a primitive root modulo n, that is, p does not divide n, and its multiplicative order modulo n is (), the degree of . [ 13 ] These results are also true over the p -adic integers , since Hensel's lemma allows lifting a factorization over the field with p elements to a factorization over the p ...

  9. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    The theorem was first stated by Ibn al-Haytham c. 1000 AD. [2] Edward Waring announced the theorem in 1770 without proving it, crediting his student John Wilson for the discovery. [3] Lagrange gave the first proof in 1771. [4] There is evidence that Leibniz was also aware of the result a century earlier, but never published it. [5]