Search results
Results from the WOW.Com Content Network
Beryllium fluoride has distinctive optical properties. In the form of fluoroberyllate glass, it has the lowest refractive index for a solid at room temperature of 1.275. Its dispersive power is the lowest for a solid at 0.0093, and the nonlinear coefficient is also the lowest at 2 × 10 −14.
The Tuttons salt (NH 4) 2 Mn(BeF 4) 2 ·6(H 2 O) is made from a solution of NH 4 BeF 3 mixed with NH 4 MnF 3. [11] The equivalent of alums are hard to make because the trivalent ion will often form a complex with fluoride in preference to the beryllium fluoride. However the violet coloured acid and rubidium chrome alum exist at chilly ...
[5]: 108 In alkoxides, oxygen forms a single bond with carbon and accepts an electron from a metal to form an alkoxide anion, R–O −, with three lone pairs. In oxonium ions, one of oxygen's two lone pairs is used to form a third covalent bond which generates a cation, >O + – or =O + – or ≡O +, with one lone pair remaining.
Most ionic compounds exist in the form of a crystal structure, in which the ions occupy the corners of the crystal. Such a structure is called a crystal lattice. Ionic compounds lose their crystal lattice structure and break up into ions when dissolved in water or any other polar solvent. This process is called solvation.
A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons as in covalent bonds, or some combination of these effects.
The fluorine–fluorine bond of the difluorine molecule is relatively weak when compared to the bonds of heavier dihalogen molecules. The bond energy is significantly weaker than those of Cl 2 or Br 2 molecules and similar to the easily cleaved oxygen–oxygen bonds of peroxides or nitrogen–nitrogen bonds of hydrazines. [8]
The polarity is due to the electronegativity of the atom of oxygen: oxygen is more electronegative than the atoms of hydrogen, so the electrons they share through the covalent bonds are more often close to oxygen rather than hydrogen. These are called polar covalent bonds, covalent bonds between atoms that thus become oppositely charged. [1]
The rest of the Earth's crust is formed also of oxygen compounds, most importantly calcium carbonate (in limestone) and silicates (in feldspars). Water-soluble silicates in the form of Na 4 SiO 4, Na 2 SiO 3, and Na 2 Si 2 O 5 are used as detergents and adhesives. [6] Peroxides retain some of oxygen's original molecular structure ((− O-O −).