Search results
Results from the WOW.Com Content Network
This postulate does not specifically talk about parallel lines; [1] it is only a postulate related to parallelism. Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate.
The Upper and Lower Dimension axioms together require that any model of these axioms have dimension 2, i.e. that we are axiomatizing the Euclidean plane. Suitable changes in these axioms yield axiom sets for Euclidean geometry for dimensions 0, 1, and greater than 2 (Tarski and Givant 1999: Axioms 8 (1), 8 (n), 9 (0), 9 (1), 9 (n)).
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
A typical result is the 1:3 ratio between the volume of a cone and a cylinder with the same height and base. The parallel postulate: If two lines intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines inevitably must intersect each other on that side if extended far enough.
The proof of Proposition 1.16 given by Euclid is often cited as one place where Euclid gives a flawed proof. [5] [6] [7] Euclid proves the exterior angle theorem by: construct the midpoint E of segment AC, draw the ray BE, construct the point F on ray BE so that E is (also) the midpoint of B and F, draw the segment FC.
[1] Parallel lines are the subject of Euclid's parallel postulate. [2] Parallelism is primarily a property of affine geometries and Euclidean geometry is a special instance of this type of geometry. In some other geometries, such as hyperbolic geometry, lines can have analogous properties that are referred to as parallelism.
The statement that point F satisfying this condition exists is Wallis's postulate [11] and is logically equivalent to Euclid's parallel postulate. [12] In hyperbolic geometry (where Wallis's postulate is false) similar triangles are congruent.
Triangle postulate: The sum of the angles of a triangle is two right angles. Playfair's axiom: Given a straight line and a point not on the line, exactly one straight line may be drawn through the point parallel to the given line. Proclus' axiom: If a line intersects one of two parallel lines, it must intersect the other also. [3]