enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !

  3. Taylor diagram - Wikipedia

    en.wikipedia.org/wiki/Taylor_diagram

    The sample Taylor diagram shown in Figure 1 [16] provides a summary of the relative skill with which several global climate models simulate the spatial pattern of annual mean precipitation. Eight models, each represented by a different letter on the diagram, are compared, and the distance between each model and the point labeled “observed ...

  4. Hook length formula - Wikipedia

    en.wikipedia.org/wiki/Hook_length_formula

    In combinatorial mathematics, the hook length formula is a formula for the number of standard Young tableaux whose shape is a given Young diagram.It has applications in diverse areas such as representation theory, probability, and algorithm analysis; for example, the problem of longest increasing subsequences.

  5. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  6. Young tableau - Wikipedia

    en.wikipedia.org/wiki/Young_tableau

    In mathematics, a Young tableau (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux) is a combinatorial object useful in representation theory and Schubert calculus. It provides a convenient way to describe the group representations of the symmetric and general linear groups and to study their properties.

  7. Difference engine - Wikipedia

    en.wikipedia.org/wiki/Difference_engine

    The London Science Museum's difference engine, the first one actually built from Babbage's design. The design has the same precision on all columns, but in calculating polynomials, the precision on the higher-order columns could be lower. A difference engine is an automatic mechanical calculator designed to tabulate polynomial functions.

  8. Radar chart - Wikipedia

    en.wikipedia.org/wiki/Radar_chart

    The radar chart is a chart and/or plot that consists of a sequence of equi-angular spokes, called radii, with each spoke representing one of the variables. The data length of a spoke is proportional to the magnitude of the variable for the data point relative to the maximum magnitude of the variable across all data points.

  9. Littlewood–Richardson rule - Wikipedia

    en.wikipedia.org/wiki/Littlewood–Richardson_rule

    A Littlewood–Richardson tableau. A Littlewood–Richardson tableau is a skew semistandard tableau with the additional property that the sequence obtained by concatenating its reversed rows is a lattice word (or lattice permutation), which means that in every initial part of the sequence any number occurs at least as often as the number +.