enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    The Gaussian quadrature chooses more suitable points instead, so even a linear function approximates the function better (the black dashed line). As the integrand is the third-degree polynomial y(x) = 7x 3 – 8x 2 – 3x + 3, the 2-point Gaussian quadrature rule even returns an exact result.

  3. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    Gauss–Legendre quadrature is optimal in a very narrow sense for computing integrals of a function f over [−1, 1], since no other quadrature rule integrates all degree 2n − 1 polynomials exactly when using n sample points. However, this measure of accuracy is not generally a very useful one---polynomials are very simple to integrate and ...

  4. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_method

    Gauss–Legendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on s points has order 2s. [1] All Gauss–Legendre methods are A-stable. [2] The Gauss–Legendre method of order two is the implicit midpoint rule.

  5. Gauss–Kronrod quadrature formula - Wikipedia

    en.wikipedia.org/wiki/Gauss–Kronrod_quadrature...

    If the interval [a, b] is subdivided, the Gauss evaluation points of the new subintervals never coincide with the previous evaluation points (except at the midpoint for odd numbers of evaluation points), and thus the integrand must be evaluated at every point. Gauss–Kronrod formulas are extensions of the Gauss quadrature formulas generated by ...

  6. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    In a BVP, one defines values, or components of the solution y at more than one point. Because of this, different methods need to be used to solve BVPs. For example, the shooting method (and its variants) or global methods like finite differences, [3] Galerkin methods, [4] or collocation methods are appropriate for that class of problems.

  7. Gauss–Jacobi quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Jacobi_quadrature

    Thus, Gauss–Jacobi quadrature can be used to approximate integrals with singularities at the end points. Gauss–Legendre quadrature is a special case of Gauss–Jacobi quadrature with α = β = 0. Similarly, the Chebyshev–Gauss quadrature of the first (second) kind arises when one takes α = β = −0.5 (+0.5).

  8. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  9. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    These zeros play an important role in numerical integration based on Gaussian quadrature. The specific quadrature based on the P n {\displaystyle P_{n}} 's is known as Gauss-Legendre quadrature . From this property and the facts that P n ( ± 1 ) ≠ 0 {\displaystyle P_{n}(\pm 1)\neq 0} , it follows that P n ( x ) {\displaystyle P_{n}(x)} has n ...