Ads
related to: importance of algebra in it
Search results
Results from the WOW.Com Content Network
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.
Equally important as the use or lack of symbolism in algebra was the degree of the equations that were addressed. Quadratic equations played an important role in early algebra; and throughout most of history, until the early modern period, all quadratic equations were classified as belonging to one of three categories.
This object of algebra was called modern algebra or abstract algebra, as established by the influence and works of Emmy Noether. [36] Some types of algebraic structures have useful and often fundamental properties, in many areas of mathematics. Their study became autonomous parts of algebra, and include: [14] group theory; field theory
The high-water mark of Chinese mathematics occurred in the 13th century during the latter half of the Song dynasty (960–1279), with the development of Chinese algebra. The most important text from that period is the Precious Mirror of the Four Elements by Zhu Shijie (1249–1314), dealing with the solution of simultaneous higher order ...
Bhaskara Acharya writes the “Bijaganita” (“Algebra”), which is the first text that recognizes that a positive number has two square roots 1130: Al-Samawal gives a definition of algebra: “[it is concerned] with operating on unknowns using all the arithmetical tools, in the same way as the arithmetician operates on the known.” [16] c ...
Al-Khwarizmi's algebra is regarded as the foundation and cornerstone of the sciences. In a sense, al-Khwarizmi is more entitled to be called "the father of algebra" than Diophantus because al-Khwarizmi is the first to teach algebra in an elementary form and for its own sake, Diophantus is primarily concerned with the theory of numbers. [52]
The study of varieties is an important part of universal algebra. An algebraic structure in a variety may be understood as the quotient algebra of term algebra (also called "absolutely free algebra ") divided by the equivalence relations generated by a set of identities.
Linear algebra is the branch of mathematics ... and square matrices have some specific properties that make their study an important part of linear algebra, ...
Ads
related to: importance of algebra in it