Search results
Results from the WOW.Com Content Network
Angular eccentricity α (alpha) and linear eccentricity (ε). Note that OA=BF=a. Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It may be defined in terms of the eccentricity, e, or the aspect ratio, b/a (the ratio of the semi-minor axis and the semi-major ...
For example, on a triaxial ellipsoid, the meridional eccentricity is that of the ellipse formed by a section containing both the longest and the shortest axes (one of which will be the polar axis), and the equatorial eccentricity is the eccentricity of the ellipse formed by a section through the centre, perpendicular to the polar axis (i.e. in ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.
Plane section of an ellipsoid (see example) Given: Ellipsoid x 2 / a 2 + y 2 / b 2 + z 2 / c 2 = 1 and the plane with equation n x x + n y y + n z z = d, which have an ellipse in common. Wanted: Three vectors f 0 (center) and f 1, f 2 (conjugate vectors), such that the ellipse can be represented by the parametric equation
A circle of radius a compressed to an ellipse. A sphere of radius a compressed to an oblate ellipsoid of revolution. Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution respectively. Other terms used are ellipticity, or oblateness.
The prolate spheroid is generated by rotation about the z-axis of an ellipse with semi-major axis c and semi-minor axis a; therefore, e may again be identified as the eccentricity. (See ellipse.) [3] These formulas are identical in the sense that the formula for S oblate can be used to calculate the surface area of a prolate spheroid and vice ...
The eccentricity of this ellipse and the precession rate of the orbit are exaggerated for visualization. Most orbits in the Solar System have a much lower eccentricity and precess at a much slower rate, making them nearly circular and stationary. The main orbital elements (or parameters). The line of apsides is shown in blue, and denoted by ω.