Search results
Results from the WOW.Com Content Network
Thus, it is often called Euler's phi function or simply the phi function. In 1879, J. J. Sylvester coined the term totient for this function, [14] [15] so it is also referred to as Euler's totient function, the Euler totient, or Euler's totient. [16] Jordan's totient is a generalization of Euler's. The cototient of n is defined as n − φ(n).
In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...
gcd(r, n) = 1 for each r in R, R contains φ(n) elements, no two elements of R are congruent modulo n. [1] [2] Here φ denotes Euler's totient function. A reduced residue system modulo n can be formed from a complete residue system modulo n by removing all integers not relatively prime to n. For example, a complete residue system modulo 12 is ...
The following is a table of the Bell series of well-known arithmetic functions. The Möbius function has () =.; The Mobius function squared has () = +.; Euler's totient has () =.; The multiplicative identity of the Dirichlet convolution has () =
In mathematics, Carmichael's totient function conjecture concerns the multiplicity of values of Euler's totient function φ(n), which counts the number of integers less than and coprime to n. It states that, for every n there is at least one other integer m ≠ n such that φ ( m ) = φ ( n ).
Euler's totient function φ(n) counts the number of totatives of n. The totatives under multiplication modulo n form the multiplicative group of integers modulo n.
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...
For b > 1, the multiplicative order of b modulo p is also the shortest period of the representation of 1/p in the numeral base b (see Unique prime; this explains the notation choice). The definition of the multiplicative order implies that, if n is the multiplicative order of b modulo p , then p is a divisor of Φ n ( b ) . {\displaystyle \Phi ...