enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    The stability function of an explicit Runge–Kutta method is a polynomial, so explicit Runge–Kutta methods can never be A-stable. [32] If the method has order p, then the stability function satisfies () = + (+) as . Thus, it is of interest to study quotients of polynomials of given degrees that approximate the exponential function the best.

  3. Runge–Kutta method (SDE) - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_method_(SDE)

    In mathematics of stochastic systems, the Runge–Kutta method is a technique for the approximate numerical solution of a stochastic differential equation.It is a generalisation of the Runge–Kutta method for ordinary differential equations to stochastic differential equations (SDEs).

  4. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_Runge–Kutta_methods

    On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems (PDF) (Thesis). Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0.

  5. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    In the separation of variables, these functions are given by solutions to = Hence, the spectral theorem ensures that the separation of variables will (when it is possible) find all the solutions. For many differential operators, such as d 2 d x 2 {\displaystyle {\frac {d^{2}}{dx^{2}}}} , we can show that they are self-adjoint by integration by ...

  6. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted into a larger system of first-order equations by introducing extra variables. For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z ...

  7. Regulated function - Wikipedia

    en.wikipedia.org/wiki/Regulated_function

    In mathematics, a regulated function, or ruled function, is a certain kind of well-behaved function of a single real variable. Regulated functions arise as a class of integrable functions , and have several equivalent characterisations.

  8. Comparison function - Wikipedia

    en.wikipedia.org/wiki/Comparison_function

    Comparison functions are primarily used to obtain quantitative restatements of stability properties as Lyapunov stability, uniform asymptotic stability, etc. These restatements are often more useful than the qualitative definitions of stability properties given in ε - δ {\displaystyle \varepsilon {\text{-}}\delta } language.

  9. Step function - Wikipedia

    en.wikipedia.org/wiki/Step_function

    The Heaviside step function is an often-used step function. A constant function is a trivial example of a step function. Then there is only one interval, =. The sign function sgn(x), which is −1 for negative numbers and +1 for positive numbers, and is the simplest non-constant step function.

  1. Related searches isolating variables kuta examples with steps and functions class

    runge kutta methods listralston runge kutta method