enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Christofides algorithm - Wikipedia

    en.wikipedia.org/wiki/Christofides_algorithm

    The cost of the solution produced by the algorithm is within 3/2 of the optimum. To prove this, let C be the optimal traveling salesman tour. Removing an edge from C produces a spanning tree, which must have weight at least that of the minimum spanning tree, implying that w(T) ≤ w(C) - lower bound to the cost of the optimal solution.

  3. Binary search - Wikipedia

    en.wikipedia.org/wiki/Binary_search

    Binary search Visualization of the binary search algorithm where 7 is the target value Class Search algorithm Data structure Array Worst-case performance O (log n) Best-case performance O (1) Average performance O (log n) Worst-case space complexity O (1) Optimal Yes In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search ...

  4. Associative containers (C++) - Wikipedia

    en.wikipedia.org/wiki/Associative_containers_(C++)

    lower_bound: lower_bound: lower_bound: lower_bound: Returns an iterator to the first element with a key not less than the given value. upper_bound: upper_bound: upper_bound: upper_bound: Returns an iterator to the first element with a key greater than a certain value. Observers key_comp: key_comp: key_comp: key_comp: Returns the key comparison ...

  5. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    The lower bound on worst-case running time of output-sensitive convex hull algorithms was established to be Ω(n log h) in the planar case. [1] There are several algorithms which attain this optimal time complexity. The earliest one was introduced by Kirkpatrick and Seidel in 1986 (who called it "the ultimate convex hull algorithm").

  6. Bin packing problem - Wikipedia

    en.wikipedia.org/wiki/Bin_packing_problem

    Brown [17] and Liang [18] improved this bound to 1.536 35. Afterward, this bound was improved to 1.540 14 by Vliet. [19] In 2012, this lower bound was again improved by Békési and Galambos [20] to .

  7. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.

  8. Weight-balanced tree - Wikipedia

    en.wikipedia.org/wiki/Weight-balanced_tree

    Join: The function Join is on two weight-balanced trees t 1 and t 2 and a key k and will return a tree containing all elements in t 1, t 2 as well as k. It requires k to be greater than all keys in t 1 and smaller than all keys in t 2. If the two trees have the balanced weight, Join simply create a new node with left subtree t 1, root k and ...

  9. Nearest neighbour algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbour_algorithm

    Moreover, for each number of cities there is an assignment of distances between the cities for which the nearest neighbour heuristic produces the unique worst possible tour. (If the algorithm is applied on every vertex as the starting vertex, the best path found will be better than at least N/2-1 other tours, where N is the number of vertices.) [1]