Search results
Results from the WOW.Com Content Network
However, in general settings, the logarithm tends to be a multi-valued function. For example, the complex logarithm is the multi-valued inverse of the complex exponential function. Similarly, the discrete logarithm is the multi-valued inverse of the exponential function in finite groups; it has uses in public-key cryptography.
The method of logarithms was publicly propounded for the first time by John Napier in 1614, in his book entitled Mirifici Logarithmorum Canonis Descriptio (Description of the Wonderful Canon of Logarithms). [1] The book contains fifty-seven pages of explanatory matter and ninety pages of tables of trigonometric functions and their natural ...
Download as PDF; Printable version ... The exponential function is the sum of the power ... The exponential function and the natural logarithm being the inverse each ...
The complex logarithm is the complex number analogue of the logarithm function. No single valued function on the complex plane can satisfy the normal rules for logarithms. However, a multivalued function can be defined which satisfies most of the identities.
This relationship is true regardless of the base of the logarithmic or exponential function: If is normally distributed, then so is for any two positive numbers , . Likewise, if e Y {\displaystyle \ e^{Y}\ } is log-normally distributed, then so is a Y , {\displaystyle \ a^{Y}\ ,} where 0 < a ≠ 1 {\displaystyle 0<a\neq 1} .
Toyesh Prakash Sharma, Etisha Sharma, "Putting Forward Another Generalization Of The Class Of Exponential Integrals And Their Applications.," International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.10, Issue.2, pp.1-8, 2023.
The natural logarithm function, if considered as a real-valued function of a positive real variable, is the inverse function of the exponential function, leading to the identities: = + = Like all logarithms, the natural logarithm maps multiplication of positive numbers into addition: [ 5 ] ln ( x ⋅ y ) = ln x + ln y ...
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .