Search results
Results from the WOW.Com Content Network
Gallium nitride (Ga N) is a binary III/V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure. Its wide band gap of 3.4 eV affords it special properties for applications in optoelectronics, [9] [10] [11] high-power
However, they also tend to be more expensive due to smaller wafer sizes and increased material fragility. Silicon germanium (SiGe) is a Si-based compound semiconductor technology offering higher-speed transistors than conventional Si devices but with similar cost advantages. Gallium nitride (GaN) is also an option for MMICs. [1]
In this case, the carrier density (in this context, also called the free electron density) can be estimated by: [5] n = N A Z ρ m m a {\displaystyle n={\frac {N_{\text{A}}Z\rho _{m}}{m_{a}}}} Where N A {\displaystyle N_{\text{A}}} is the Avogadro constant , Z is the number of valence electrons , ρ m {\displaystyle \rho _{m}} is the density of ...
Indium gallium nitride (InGaN, In x Ga 1−x N) is a semiconductor material made of a mix of gallium nitride (GaN) and indium nitride (InN). It is a ternary group III/group V direct bandgap semiconductor. Its bandgap can be tuned by varying the amount of indium in the alloy.
The invention of the high-electron-mobility transistor (HEMT) is usually attributed to physicist Takashi Mimura (三村 高志), while working at Fujitsu in Japan. [4] The basis for the HEMT was the GaAs (gallium arsenide) MOSFET (metal–oxide–semiconductor field-effect transistor), which Mimura had been researching as an alternative to the standard silicon (Si) MOSFET since 1977.
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
These zinc oxide nanowires were then used as templates over which crystals of gallium nitride were grown by chemical vapour deposition. [3] Once the gallium nitride crystals formed, heat was then applied to the sapphire wafer to allow vaporization of the zinc oxide nanowire cores. This left behind hollow gallium nitride nanotubes, since gallium ...
Gallium phosphide (GaP), a phosphide of gallium, is a compound semiconductor material with an indirect band gap of 2.24 eV at room temperature. Impure polycrystalline material has the appearance of pale orange or grayish pieces. Undoped single crystals are orange, but strongly doped wafers appear darker due to free-carrier absorption.