Search results
Results from the WOW.Com Content Network
Wilkinson's catalyst is best known for catalyzing the hydrogenation of olefins with molecular hydrogen. [ 11 ] [ 12 ] The mechanism of this reaction involves the initial dissociation of one or two triphenylphosphine ligands to give 14- or 12-electron complexes, respectively, followed by oxidative addition of H 2 to the metal.
The difference in regioselectivity is more pronounced in the hydroboration of vinylarenes with HBcat. Wilkinson's catalyst or the cation Rh(COD) 2 (in the presence of PPh 3) produces the Markovnikov product. [12] [13] The anti-Markovnikov product is produced in the absence of a catalyst. [14]
First synthesised in 1885 by the German chemist Ludwig Legler, [2] HMTD may be prepared by the reaction of an aqueous solution of hydrogen peroxide and hexamine in the presence of an acid catalyst, such as citric acid, acetic acid or dilute sulfuric acid. The hydrogen peroxide needs to be at least 12% w/w concentration, as lower concentrations ...
The reaction name recognizes JirÅ Tsuji, whose team first reported the use of Wilkinson's catalyst (RhCl(PPh 3) 3) for these reactions: RC(O)X + RhCl(PPh 3) 3 → RX + RhCl(CO)(PPh 3) 2 + PPh 3. Although decarbonylation can be effected by several transition metal complexes, Wilkinson's catalyst has proven the most effective. [1]
To confer good solubility in the organic solvent, these catalysts are often derived from naphthenic acids and ethylhexanoic acid, which are highly lipophilic. These catalysts initiate radical chain reactions, autoxidation that produce organic radicals that combine with oxygen to give hydroperoxide intermediates. Generally the selectivity of ...
A peroxide-catalyzed process was reported in academic literature in 1947, [9] but the introduction of Speier's catalyst (H 2 PtCl 6) was a big breakthrough. Karstedt's catalyst was later introduced. It is a lipophilic complex that is soluble in the organic substrates of industrial interest. [ 10 ]
Hydroacylation is a type of organic reaction in which an electron-rich [1] unsaturated hydrocarbon inserts into a formyl C-H bond. With alkenes, the product is a ketone: RCHO + CH 2 =CHR' → RC(O)CH 2 CH 2 R' With an alkyne instead, the reaction produces an α,β-unsaturated ketone. [2] The reaction requires a metal catalyst or a radical ...
The Dakin oxidation can occur in mild acidic conditions as well, with a mechanism analogous to the base-catalyzed mechanism. In methanol, hydrogen peroxide, and catalytic sulfuric acid, the carbonyl oxygen is protonated (14), after which hydrogen peroxide adds as a nucleophile to the carbonyl carbon, forming a tetrahedral intermediate (15).