Search results
Results from the WOW.Com Content Network
The molecules of such solvents readily donate protons (H +) to solutes, often via hydrogen bonding. Water is the most common protic solvent. Conversely, polar aprotic solvents cannot donate protons but still have the ability to dissolve many salts. [1] [2] Methods for purification of common solvents are available [3]
It is noteworthy that proton-conducting DES (e.g. the mixture of imidazolium methanesulfonate and 1H-1,2,4-triazole in a 1:3 mole ratio or the mixture of 1,2,4-triazolium methanesulfonate and 1H-1,2,4-triazole in a 1:3 mole ratio, wherein the Brønsted base may act as the hydrogen bond donor) have also found applications as proton conductors ...
The general notation for hydrogen bonding is Dn−H···Ac, where the solid line represents a polar covalent bond, and the dotted or dashed line indicates the hydrogen bond. [6] The most frequent donor and acceptor atoms are nitrogen (N), oxygen (O), and fluorine (F), due to their high electronegativity and ability to engage in stronger ...
For example, the Kamlet-Taft parameters are dipolarity/polarizability (π*), hydrogen-bonding acidity (α) and hydrogen-bonding basicity (β). These can be calculated from the wavelength shifts of 3–6 different solvatochromic dyes in the solvent, usually including Reichardt's dye , nitroaniline and diethylnitroaniline .
Exchange rates are a function of two parameters: solvent accessibility and hydrogen bonding. Thus an amide which is part of an intramolecular hydrogen bond will exchange slowly if at all, while an amide on the surface of protein hydrogen bonded to water will exchange rapidly. Amides buried from the solvent but not hydrogen bonded may also have ...
The intramolecular H-bond formed in the cis-enol form is more pronounced when there is no competition for intermolecular H-bonding with the solvent. As a result, solvents of low polarity that do not readily participate in H-bonding allow cis -enolic stabilization by intramolecular H-bonding.
Its principal utility is that it provides simple predictions of phase equilibrium based on a single parameter that is readily obtained for most materials. These predictions are often useful for nonpolar and slightly polar (dipole moment < 2 debyes [citation needed]) systems without hydrogen bonding. It has found particular use in predicting ...
Hansen solubility parameters were developed by Charles M. Hansen in his Ph.D thesis in 1967 [1] [2] as a way of predicting if one material will dissolve in another and form a solution. [3] They are based on the idea that like dissolves like where one molecule is defined as being 'like' another if it bonds to itself in a similar way.