Search results
Results from the WOW.Com Content Network
Laser metal deposition (LMD) is an additive manufacturing process in which a feedstock material (typically a powder) is melted with a laser and then deposited onto a substrate. [1] A variety of pure metals and alloys can be used as the feedstock, as well as composite materials such as metal matrix composites .
A plume ejected from a SrRuO 3 target during pulsed laser deposition. One possible configuration of a PLD deposition chamber. Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique where a high-power pulsed laser beam is focused inside a vacuum chamber to strike a target of the material that is to be deposited.
In powder-fed directed-energy deposition, a high-power laser is used to melt metal powder supplied to the focus of the laser beam. The laser beam typically travels through the center of the deposition head and is focused to a small spot by one or more lenses.
The laser beam is directed in the X and Y directions with two high frequency scanning mirrors and remains in focus along the layer utilising an F-Theta lens arrangement. The laser energy is intense and focused enough to permit full melting (fusion) of the particles to form a solid structure.
An SLS machine being used at the Centro de Pesquisas Renato Archer in Brazil.. Selective laser sintering (SLS) is an additive manufacturing (AM) technique that uses a laser as the power and heat source to sinter powdered material (typically nylon or polyamide), aiming the laser automatically at points in space defined by a 3D model, binding the material together to create a solid structure.
A number of videos and images claiming to show some kind of laser starting the massive fires went viral on social media platforms, though these claims were quickly debunked—most were either ...
Pages in category "Laser applications" ... Laser medicine; Laser metal deposition; ... Precision Airborne Standoff Directed Energy Weapon; Pulsed laser deposition; R.
Depending on the part being manufactured, deposition rates can range up to 200 cubic inches (3,300 cm 3) per hour. With a light alloy, such as titanium, this translates to a real-time deposition rate of 40 pounds (18 kg) per hour. A wide range of engineering alloys are compatible with the EBDM process and are readily available in the form of ...