Search results
Results from the WOW.Com Content Network
There are two parts of the Slutsky equation, namely the substitution effect and income effect. In general, the substitution effect is negative. Slutsky derived this formula to explore a consumer's response as the price of a commodity changes. When the price increases, the budget set moves inward, which also causes the quantity demanded to decrease.
In probability theory, Slutsky's theorem extends some properties of algebraic operations on convergent sequences of real numbers to sequences of random variables. [1]
Slutsky is principally known for work in deriving the relationships embodied in the Slutsky equation widely used in microeconomic consumer theory for separating the substitution effect and the income effect of a price change on the total quantity of a good demanded following a price change in that good, or in a related good that may have a cross-price effect on the original good quantity.
Roy's identity reformulates Shephard's lemma in order to get a Marshallian demand function for an individual and a good from some indirect utility function.. The first step is to consider the trivial identity obtained by substituting the expenditure function for wealth or income in the indirect utility function (,), at a utility of :
The Hicksian demand function isolates the substitution effect by supposing the consumer is compensated with exactly enough extra income after the price rise to purchase some bundle on the same indifference curve. [2] If the Hicksian demand function is steeper than the Marshallian demand, the good is a normal good; otherwise, the good is inferior.
The result in the article is not known as Slutsky's Theorem (that is a different result), but rather Slutsky's Lemma. The two results are cited often enough that the distinction should be made. — Preceding unsigned comment added by 98.223.197.174 16:34, 2 January 2013 (UTC) The claim is wrong for general X_n, Y_n.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.