enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.

  3. Fundamental interaction - Wikipedia

    en.wikipedia.org/wiki/Fundamental_interaction

    Gravitation also explains astronomical phenomena on more modest scales, such as planetary orbits, as well as everyday experience: objects fall; heavy objects act as if they were glued to the ground, and animals can only jump so high. Gravitation was the first interaction to be described mathematically.

  4. g-factor (physics) - Wikipedia

    en.wikipedia.org/wiki/G-factor_(physics)

    The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).

  5. Nilsson model - Wikipedia

    en.wikipedia.org/wiki/Nilsson_model

    For an axially symmetric shape with the axis of symmetry being the z axis, the Hamiltonian is = + (+) ( ). Here m is the mass of the nucleon, N is the total number of harmonic oscillator quanta in the spherical basis, is the orbital angular momentum operator, is its square (with eigenvalues (+)), = (/) (+) is the average value of over the N shell, and s is the intrinsic spin.

  6. Nuclear force - Wikipedia

    en.wikipedia.org/wiki/Nuclear_force

    Comparison between the Nuclear Force and the Coulomb Force. a – residual strong force (nuclear force), rapidly decreases to insignificance at distances beyond about 2.5 fm, b – at distances less than ~ 0.7 fm between nucleons centres the nuclear force becomes repulsive, c – coulomb repulsion force between two protons (over 3 fm, force becomes the main), d – equilibrium position for ...

  7. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    Weightlessness actually occurs because orbiting objects are in free-fall. [12] The effect of ground elevation depends on the density of the ground (see Slab correction section). A person flying at 9,100 m (30,000 ft) above sea level over mountains will feel more gravity than someone at the same elevation but over the sea.

  8. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. [1] [2]: 183–184 Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.

  9. Weak interaction - Wikipedia

    en.wikipedia.org/wiki/Weak_interaction

    This is because it can convert a proton (hydrogen) into a neutron to form deuterium which is important for the continuation of nuclear fusion to form helium. The accumulation of neutrons facilitates the buildup of heavy nuclei in a star. [3] Most fermions decay by a weak interaction over time.