Search results
Results from the WOW.Com Content Network
Primary aromatic amines yield diazonium ions in a solution of sodium nitrite. Upon heating this solution with copper(I) chloride, the diazonium group is replaced by -Cl. This is a comparatively easy method to make aryl halides as the gaseous product can be separated easily from aryl halide. When an iodide is to be made, copper chloride is not ...
Reductive amination (also known as reductive alkylation) is a form of amination that converts a carbonyl group to an amine via an intermediate imine. The carbonyl group is most commonly a ketone or an aldehyde. It is a common method to make amines and is widely used in green chemistry since it can be done catalytically in one-pot under
By reaction with tertiary amines, long-chain alkyl bromides such as 1-bromododecane, give quaternary ammonium salts, which are used as phase transfer catalysts. [ 9 ] With Michael acceptors the addition is also anti-Markovnikov because now a nucleophilic X − reacts in a nucleophilic conjugate addition for example in the reaction of HCl with ...
Amine alkylation (amino-dehalogenation) is a type of organic reaction between an alkyl halide and ammonia or an amine. [1] The reaction is called nucleophilic aliphatic substitution (of the halide), and the reaction product is a higher substituted amine. The method is widely used in the laboratory, but less so industrially, where alcohols are ...
In organic chemistry, an electrophilic aromatic halogenation is a type of electrophilic aromatic substitution.This organic reaction is typical of aromatic compounds and a very useful method for adding substituents to an aromatic system.
Upon workup by acidic hydrolysis the primary amine is liberated as the amine salt. [11] Alternatively the workup may be via the Ing–Manske procedure, involving reaction with hydrazine. This method produces a precipitate of phthalhydrazide (C 6 H 4 (CO) 2 N 2 H 2) along with the primary amine: C 6 H 4 (CO) 2 NR + N 2 H 4 → C 6 H 4 (CO) 2 N 2 ...
In organic chemistry, hydroamination is the addition of an N−H bond of an amine across a carbon-carbon multiple bond of an alkene, alkyne, diene, or allene. [1] In the ideal case, hydroamination is atom economical and green. [2] Amines are common in fine-chemical, pharmaceutical, and agricultural industries.
Many alkyl amines are produced industrially by the amination of alcohols using ammonia in the presence of solid acid catalysts. Illustrative is the production of tert-butylamine: NH 3 + CH 2 =C(CH 3) 2 → H 2 NC(CH 3) 3. The Ritter reaction of isobutene with hydrogen cyanide is not useful in this case because it produces too much waste. [1]