enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice constant - Wikipedia

    en.wikipedia.org/wiki/Lattice_constant

    A simple cubic crystal has only one lattice constant, the distance between atoms, but in general lattices in three dimensions have six lattice constants: the lengths a, b, and c of the three cell edges meeting at a vertex, and the angles α, β, and γ between those edges. The crystal lattice parameters a, b, and c have the

  3. Lattice model (physics) - Wikipedia

    en.wikipedia.org/wiki/Lattice_model_(physics)

    In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics , where the atoms of a crystal automatically form a lattice.

  4. Laue equations - Wikipedia

    en.wikipedia.org/wiki/Laue_equations

    Laue equation. In crystallography and solid state physics, the Laue equations relate incoming waves to outgoing waves in the process of elastic scattering, where the photon energy or light temporal frequency does not change upon scattering by a crystal lattice. They are named after physicist Max von Laue (1879–1960).

  5. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of wavefunction solutions. Notice in the case of one spatial dimension, for one particle, the partial derivative reduces to an ordinary derivative .

  6. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    The geometry of the unit cell is defined as a parallelepiped, providing six lattice parameters taken as the lengths of the cell edges (a, b, c) and the angles between them (α, β, γ). The positions of particles inside the unit cell are described by the fractional coordinates ( x i , y i , z i ) along the cell edges, measured from a reference ...

  7. Particle in a one-dimensional lattice - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_one...

    In some cases, the Schrödinger equation can be solved analytically on a one-dimensional lattice of finite length [6] [7] using the theory of periodic differential equations. [8] The length of the lattice is assumed to be L = N a {\displaystyle L=Na} , where a {\displaystyle a} is the potential period and the number of periods N {\displaystyle ...

  8. Lattice gauge theory - Wikipedia

    en.wikipedia.org/wiki/Lattice_gauge_theory

    In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics , and include the prevailing theories of elementary particles : quantum electrodynamics , quantum chromodynamics (QCD) and particle physics' Standard Model .

  9. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [ 1 ] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.