enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dehydrohalogenation - Wikipedia

    en.wikipedia.org/wiki/Dehydrohalogenation

    Traditionally, alkyl halides are substrates for dehydrohalogenations. The alkyl halide must be able to form an alkene, thus halides having no C–H bond on an adjacent carbon are not suitable substrates. Aryl halides are also unsuitable. Upon treatment with strong base, chlorobenzene dehydrohalogenates to give phenol via a benzyne intermediate.

  3. Haloalkane - Wikipedia

    en.wikipedia.org/wiki/Haloalkane

    Haloalkane or alkyl halides are the compounds which have the general formula "RX" where R is an alkyl or substituted alkyl group and X is a halogen (F, Cl, Br, I). Haloalkanes have been known for centuries. Chloroethane was produced in the 15th century. The systematic synthesis of such compounds developed in the 19th century in step with the ...

  4. Dehalogenation - Wikipedia

    en.wikipedia.org/wiki/Dehalogenation

    The reaction begins with the formation of alkyl/arene-magnesium-halogen compound, followed by addition of proton source to form dehalogenated product. Egorov and his co-workers have reported dehalogenation of benzyl halides using atomic magnesium in 3P state at 600 °C. Toluene and bi-benzyls were produced as the product of the reaction. [9]

  5. Alkene - Wikipedia

    en.wikipedia.org/wiki/Alkene

    Two common methods of elimination reactions are dehydrohalogenation of alkyl halides and dehydration of alcohols. A typical example is shown below; note that if possible, the H is anti to the leaving group, even though this leads to the less stable Z-isomer. [27] An example of an E2 Elimination

  6. Halogenation - Wikipedia

    en.wikipedia.org/wiki/Halogenation

    In chemistry, halogenation is a chemical reaction which introduces one or more halogens into a chemical compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. [1]

  7. Zaytsev's rule - Wikipedia

    en.wikipedia.org/wiki/Zaytsev's_rule

    In it, Zaytsev proposed a purely empirical rule for predicting the favored regiochemistry in the dehydrohalogenation of alkyl iodides, though it turns out that the rule is applicable to a variety of other elimination reactions as well. While Zaytsev's paper was well referenced throughout the 20th century, it was not until the 1960s that ...

  8. Corey–House synthesis - Wikipedia

    en.wikipedia.org/wiki/Corey–House_synthesis

    The scope of the Corey-House synthesis is exceptionally broad, and a range of lithium diorganylcuprates (R 2 CuLi, R = 1°, 2°, or 3° alkyl, aryl, or alkenyl) and organyl (pseudo)halides (RX, R = methyl, benzylic, allylic, 1°, or cyclic 2° alkyl, aryl, or alkenyl and X = Br, I, OTs, or OTf; X = Cl is marginal) will undergo coupling as the nucleophilic and electrophilic coupling partners ...

  9. β-Hydride elimination - Wikipedia

    en.wikipedia.org/wiki/Β-Hydride_elimination

    β-Hydride elimination is a reaction in which a metal-alkyl centre is converted into the corresponding metal-hydride-alkene. [1] β-Hydride elimination can also occur for many alkoxide complexes as well. The main requirements are that the alkyl group possess a C-H bond β to the metal and that the metal be coordinatively unsaturated.