Search results
Results from the WOW.Com Content Network
Bayesian Inference in Statistical Analysis . Author: George E. P. Box and George C. Tiao Publication data: Addison Wesley Publishing Co., 1973. Reprinted 1992: Wiley ISBN 0471574287 Description: The first complete analysis of Bayesian Inference for many statistical problems.
Andrew Eric Gelman (born February 11, 1965) is an American statistician and professor of statistics and political science at Columbia University. Gelman received bachelor of science degrees in mathematics and in physics from MIT , where he was a National Merit Scholar , in 1986.
Exploratory analysis of Bayesian models is an adaptation or extension of the exploratory data analysis approach to the needs and peculiarities of Bayesian modeling. In the words of Persi Diaconis: [16] Exploratory data analysis seeks to reveal structure, or simple descriptions in data. We look at numbers or graphs and try to find patterns.
Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...
As statistics and data sets have become more complex, [a] [b] questions have arisen regarding the validity of models and the inferences drawn from them. There is a wide range of conflicting opinions on modelling. Models can be based on scientific theory or ad hoc data analysis, each employing different methods. Advocates exist for each approach ...
An approach to inverse uncertainty quantification is the modular Bayesian approach. [7] [17] The modular Bayesian approach derives its name from its four-module procedure. Apart from the current available data, a prior distribution of unknown parameters should be assigned. Module 1: Gaussian process modeling for the computer model
The technique was originally developed by Gelman and T. Little in 1997, [6] building upon ideas of Fay and Herriot [7] and R. Little. [8] It was subsequently expanded on by Park, Gelman, and Bafumi in 2004 and 2006. It was proposed for use in estimating US-state-level voter preference by Lax and Philips in 2009.
Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law.