Search results
Results from the WOW.Com Content Network
Most models use meshes which are either structured (Cartesian or curvilinear grids) or unstructured (triangular, tetrahedral, etc.). Gerris is quite different on this respect: it implements a deal between structured and unstructured meshes by using a tree data structure, [a] allowing to refine locally (and dynamically) the (finite-volume) description of the pressure and velocity fields.
FEATool Multiphysics is a fully integrated physics and PDE simulation environment where the modeling process is subdivided into six steps; preprocessing (CAD and geometry modeling), mesh and grid generation, physics and PDE specification, boundary condition specification, solution, and postprocessing and visualization.
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion).
Schematic of D2Q9 lattice vectors for 2D Lattice Boltzmann. Unlike CFD methods that solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice.
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
In fluid dynamics the Milne-Thomson circle theorem or the circle theorem is a statement giving a new stream function for a fluid flow when a cylinder is placed into that flow. [ 1 ] [ 2 ] It was named after the English mathematician L. M. Milne-Thomson .
The journal focuses on fluid dynamics and also covers geophysical fluid dynamics, biofluid dynamics, nanofluidics and magnetohydrodynamics. Its lead editors are Eric Lauga (University of Cambridge) and Beverley McKeon (California Institute of Technology). [1] The journal launched in January 2016 and published its 500th article in 2017. [2]
Multi-particle collision dynamics (MPC), also known as stochastic rotation dynamics (SRD), [1] is a particle-based mesoscale simulation technique for complex fluids which fully incorporates thermal fluctuations and hydrodynamic interactions. [2] Coupling of embedded particles to the coarse-grained solvent is achieved through molecular dynamics. [3]